EMC TEST REPORT

For

SHENZHEN ABEST LIGHTING CO., LTD.

Foldable led plant grow light

Test Model: YF-A08-SF01-720w

Additional Models : Please Refer To Page 8 Model List

Prepared for Address	 SHENZHEN ABEST LIGHTING CO.,LTD. 5Floor, Building8, HuaFeng Science and technology park, Tangwei, FuYong town, Bao an district, Shenzhen, China
Prepared by	: Shenzhen Southern LCS Compliance Testing Laboratory Ltd.
Address	: 101-201, No.39 Building, Xialang Industrial Zone, Heshuikou Community, Matian Street, Guangming District, Shenzhen, China
Tel	: (+86)755-29871520
Fax	: (+86)755-29871521
Web	: www.LCS-cert.com
Mail	: webmaster@LCS-cert.com
Date of receipt of test sample Number of tested samples	November 27, 2021 1
Serial number	: Prototype
Date of Test	November 27, 2021 ~ December 03, 2021
Date of Report	: December 03, 2021

CE

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 1 of 56

12 m

	EMC TEST REPORT	
Limits and methods of measu	EN IEC 55015:2019+A11:2020 urement of radio disturbance charac	taristics of electrical lighting
Limits and methods of measures	and similar equipment	teristics of electrical lighting
	EN 61547: 2009	
Equipment for ger	neral lighting purposes - EMC immu	unity requirements
Report Reference No:	LCS211127017BE	
Date Of Issue:	December 03, 2021	
	Shenzhen Southern LCS Compli	
	101-201, No.39 Building,Xialan Community, Matian Street,Guang Full application of Harmonised sta	ning District, Shenzhen, China ndards
	Partial application of Harmonised Other standard testing method \Box	standards 🗆
Annlicant's Name •	SHENZHEN ABEST LIGHTIN	G CO LTD
	5Floor, Building8, HuaFeng Scien	
Auuit58	Tangwei, FuYong town, Bao an di	strict, Shenzhen, China
Test Specification:		
Standard:	EN IEC 55015:2019+A11:2020 EN IEC 61000-3-2:2019+A1:2021 EN 61000-3-3:2013/A2:2021 EN 61547: 2009	
Test Report Form No:		
	Shenzhen Southern LCS Compliar	nce Testing Laboratory Ltd
Master TRF:	-	tee resting Europlatory Eta.
	pliance Testing Laboratory Ltd. A	Il wights usserved
This publication may be reprodu Shenzhen Southern LCS Compl and source of the material. Sher responsibility for and will r	iance Testing Laboratory Ltd. F iance Testing Laboratory Ltd. is ac nzhen Southern LCS Compliance T tot assume liability for damage material due to its placement and co	nmercial purposes as long as the knowledged as copyright owner 'esting Laboratory Ltd. takes no s resulting from the reader's
Test Item Description: :	Foldable led plant grow light	
Trade Mark:	ABEST	
Test Model:	YF-A08-SF01-720w	
Power Supply:	220-240V~, 50/60Hz, 720W	
Results:	PASS	
Compiled by:	Supervised by:	Approved by:
Any Lin	megu	Cherry Chen
Amy Liu/ File administrators	Dm Gu/ Technique principal	Cherry Chen / Manager
	Din Gu/ Teeninque principal	

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 2 of 56

EMC - TEST REPORT

Test Report No. :	LCS211127017BE	December 03, 2021 Date of issue
Applicant	.: SHENZHEN ABEST LIGHTING	CO.,LTD.
	.: 5Floor, Building8, HuaFeng Science	
	FuYong town, Bao an district, Shenz	
Telephone	.: /	
Fax	.: /	
Manufacturer	.: SHENZHEN ABEST LIGHTING	CO.,LTD.
Address	.: 5Floor, Building8, HuaFeng Science FuYong town, Bao an district, Shenzl	
Telephone	. /	
Fax	.: /	
	.: SHENZHEN ABEST LIGHTING	
Address	.: 5Floor, Building8, HuaFeng Science	and technology park, Tangwei,
	FuYong town, Bao an district, Shenz	hen, China
Telephone	.: /	
Fax	.: /	

Test Result according to the standards on page 6: PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 3 of 56

Revision History

Revision	Issue Date	Revisions	Revised By
00	December 03, 2021	Initial Issue	Cherry Chen

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 4 of 56

1000

TABLE OF CONTENTS

1. REPORT INFORMATION DESCRIPTION	6
1.1 Summary of Standards and Results	6
1.2 Product Information	8
1.3 Description of Test Facility	9
2. STATEMENT OF THE MEASUREMENT UNCERTAINTY	10
3. MEASURING DEVICES AND TEST EQUIPMENT	11
4. TEST DETAILS	13
4.1 Conducted Disturbance	13
4.2 Radiated Disturbance (9kHz to 30MHz)	
4.3 Radiated Disturbance (30MHz to 1000MHz)	16
4.4 Harmonic Current Emissions	
4.5 Voltage Fluctuations & Flicker	
4.6 Electrostatic Discharge Immunity Test	21
4.7 Radiated, Radio-Frequency, Electromagnetic Field Immunity Test	
4.8 Electrical Fast Transient/Burst Immunity Test	24
4.9 Immunity to Conducted Disturbances, Induced by Radio-Frequency Fields	
4.10 Surge Immunity Test	
4.11 Voltage Dips, Short Interruptions and Voltage Variations Immunity Test	
ANNEX A (Emission and Immunity test results)	29
ANNEX B (Test photograph)	
ANNEX C (External and internal photos of the EUT)	51

1. REPORT INFORMATION DESCRIPTION

1.1 Summary of Standards and Results

1.1.1 Description of Standards and Results

EMISSION (EN IEC 55015:2019+A11:2020)			
Description of Test Item	Test Standard	Limits	Results
Conducted Disturbance at the electric power supply interface	EN IEC 55015:2019+A11:2020	1	PASS
Conducted Disturbance at wired network interfaces	EN IEC 55015:2019+A11:2020	/	N/A ¹
Radiated Disturbance (9kHz to 30MHz)	EN IEC 55015:2019+A11:2020	2m	PASS
Radiated Disturbance (30MHz to 1000MHz)	EN IEC 55015:2019+A11:2020	/	PASS
Harmonic Current Emissions ²	EN IEC 61000-3-2:2019+A1:2021	Class C	PASS
Voltage Fluctuations & Flicker ³	EN 61000-3-3:2013/A2:2021	/	PASS
IM	IMUNITY (EN 61547: 2009)		
Description of Test Item	Test Standard	Basic Standard	Results
Electrostatic Discharge Immunity Test (ESD)	EN 61547: 2009	EN 61000-4-2	PASS
Radiated, Radio-Frequency, Electromagnetic Field Immunity Test (RS)	EN 61547: 2009	EN 61000-4-3	PASS
Power Frequency Magnetic Field Immunity Test	EN 61547: 2009	EN 61000-4-8	N/A ¹
Electrical Fast Transient/Burst Immunity Test (EFT)	EN 61547: 2009	EN 61000-4-4	PASS
Immunity to Conducted Disturbances, Induced by Radio-Frequency Fields (CS)	EN 61547: 2009	EN 61000-4-6	PASS
Surge Immunity Test (a.c. Power Ports)	EN 61547: 2009	EN 61000-4-5	PASS
Voltage Dips,Short Interruptions and Voltage Variations Immunity Test Note 1: N/A is an abbreviation for no	EN 61547: 2009	EN 61000-4-11	PASS

Note 1: N/A is an abbreviation for not applicable.

Note 2: according to EN IEC 61000-3-2:2019+A1:2021, for LED products < 5 watts, no limits are defined for the harmonics test, the EUT is deemed to comply with the standard without test.

Note 3:according to EN 61000-3-3:2013/A2:2021 Clause A.2, Incandescent lamp luminaires with ratings less than or equal to 1 000 W and discharge and LED lamp luminaires with ratings less than or equal to 600 W, are deemed to comply with the standard and are not required to be tested.

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 6 of 56

1.1.2 Performance Criteria

The performance of lighting equipment shall be assessed by monitoring:

- the luminous intensity of the luminaire or of the lamp(s).
- the functioning of the control in the case of equipment which includes a regulating control or concerns the regulating control itself.
- the functioning of the starting device, if any.

Performance criterion A: During the test, no change of the luminous intensity shall be observed and the regulating control, if any, shall operate during the test as intended.

Performance criterion B: During the test, the luminous intensity may change to any value. After the test, the luminous intensity shall be restored to its initial value within 1 min. Regulating controls need not function during the test, but after the test, the mode of the control shall be the same as before the test provided that during the test no mode changing commands were given.

Performance criterion C: During and after the test, any change of the luminous intensity is allowed and the lamp(s) may be extinguished. After the test, within 30 min, all functions shall return to normal, if necessary by temporary interruption of the mains supply and/or operating the regulating control.

Additional requirement for lighting equipment incorporating a starting device: After the test, the lighting equipment is switched off. After half an hour, it is switched on again. The lighting equipment shall start and operate as intended.

1.2 Product Information

1.2.1 EUT introduce

EUT	: Foldable led plant grow light
Test Model	: YF-A08-SF01-720w
Additional Models	: See page 8 Model List
EUT Clock Frequency	: /
1.2.2 Test Modes	
Mode 1	: EUT was test with power on, to get the status 'Lighting'
Mode 2	EUT was test with power on and keep charging, to get the status 'Charging'

:	EUT was test with max power,	to get the status	'Full load'
---	------------------------------	-------------------	-------------

1.2.3 Test Auxiliary Equipment

Mode 4

Configuration	Model	Rating	Manufacturer

1.2.4 General Product Information

The EUTs are general luminaires for illumination purpose. detailed differences shown in below. Model list:

Model	Rating
YF-A08-SFXX-720w	220-240V~, 50/60Hz, 720W
YF-A08-SFXX-680w	220-240V~, 50/60Hz, 680W
YF-A08-SFXX-650w	220-240V~, 50/60Hz, 650W
YF-A08-SFXX-600w	220-240V~, 50/60Hz, 600W
YF-A06-SFXX-480w	220-240V~, 50/60Hz, 480W
Remarks: XX=01,02,03,04,05 means	difference spectrum

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 8 of 56

1.3 Description of Test Facility

Test Facilities	: Shenzhen Southern LCS Compliance Testing Laboratory Ltd.
	101-201, No.39 Building, Xialang Industrial Zone, Heshuikou
	Community, Matian Street, Guangming District, Shenzhen, China.
	TUV RH Registration Number. is UA 50418075 0001.
	UL Registration Number. is 100571-492.
	NVLAP Registration Code is 600112-0.
	CNAS Registration Number is L10160.
Radiated,	: Shenzhen LCS Compliance Testing Laboratory Ltd.
Radio-Frequency,	101, 201 Building A and 301 Building C, Juji Industrial Park,
Electromagnetic Field	Yabianxueziwei, Shajing Street, Baoan District, Shenzhen,
Immunity Test (RS)	Guangdong, China.
	CNAS Registration Number is L4595.
	CMA Registration Number is 201819013358.

Note : Radiated, Radio-Frequency, Electromagnetic Field Immunity Test (RS) Subcontract To Shenzhen LCS Compliance Testing Laboratory Ltd for Testing.

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 9 of 56 Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

2. STATEMENT OF THE MEASUREMENT UNCERTAINTY

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Test	Parameters	Expanded uncertainty (U _{lab})	Expanded uncertainty (U _{cispr})
Conducted Disturbance	Level accuracy (9kHz to 150kHz) (150kHz to 30MHz)	± 1.40 dB ± 2.80 dB	± 4.0 dB ± 3.6 dB
Electromagnetic Radiated Emission (3-loop)	Level accuracy (9kHz to 30MHz)	± 3.46 dB	N/A
Radiated Disturbance	Level accuracy (9kHz to 30MHz)	± 3.12 dB	N/A
Radiated Disturbance	Level accuracy (30MHz to 200MHz)	± 4.66 dB	± 5.2 dB
Radiated Disturbance	Level accuracy (200MHz to 1000MHz)	± 4.64 dB	\pm 5.0 dB
Harmonic Current	Voltage	± 0.640%	N/A
Voltage Fluctuations & Flicker	Voltage	± 0.530%	N/A

(1) Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus.

(2) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 10 of 56

1001- */

3. MEASURING DEVICES AND TEST EQUIPMENT

Conducted Disturbance

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Due Date.
1	EMI Test Receiver	R&S	ESCI	101142	2022-06-08
2	10dB Attenuator	SCHWARZBECK	VTSD9561-F	9561-F159	2022-06-08
3	Artificial Mains Network	SCHWARZBECK	NSLK8127	8127716	2022-06-08
4	EMI Test Software	EZ	EZ_EMC	N/A	/
5	Asymmetric Artificial Network	SCHWARZBECK	NTFM 8158	NTFM 8158#120	2022-06-08
6	Voltage Probe	SCHWARZBECK	KT 9420	9420401	2022-06-08
7	No. 2 shielded room	CHENGYU	843	/	2023-06-16

Radiated Disturbance

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Due Date.
1	EMI Test Receiver	R&S	ESCI	101142	2022-06-08
2	Triple-loop Antenna	EVERFINE	LLA-2	9161	2022-06-08
3	EMI Test Software	EZ	EZ_EMC	N/A	/
4	No. 2 shielded room	CHENGYU	843	/	2023-06-16

Radiated Disturbance

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Due Date.
1	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2024-06-15
2	EMI Test Receiver	R&S	ESCI3	101010	2022-06-08
3	Spectrum analyzer	Agilent	N9020A	MY49100699	2022-06-08
4	Log per Antenna	SCHWARZBECK	VULB9163	5094	2022-06-23
5	Horn antenna	ETS-LINDGREN	3115	00034771	2022-06-23
6	EMI Test Software	EZ	EZ_EMC	N/A	/
7	Positioning Controller	MF	BK8807-4A-2T	2016-0808-008	/

Harmonic Current&Voltage Fluctuation and Flicker

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Due Date.
1	Harmonic Current and Flicker Test System	HTEC	AC2000A	/	2022-06-08
2	Linear variable frequency power supply	HTEC	HHF-5010	/	2022-06-08

Electrostatic Discharge Immunity Test (ESD)

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Due Date.
1	ESD Simulator	TESEQ	NSG 437	1615	2022-03-24

Electrical Fast Transient/Burst Immunity Test (EFT)

Item Test Equipment Manufacturer Model No. Serial No. Due Date
--

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 11 of 56

Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Report No.: LCS21112						o.: LCS21112701	7BE
	1	Electrical fast transient(EFT)generator	HTEC	HEFT51	162201	2022-06-10	
	2	Coupling Clamp	HTEC	H3C	163701	2022-05-13	

Surge Immunity Test

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Due Date.
1	Surge Generator	3CTEST	SG5006G	EC5581070	2022-05-13
2	Coupling/decoupling Network	3CTEST	SGN-5010G	EC5591033	2022-05-13

Immunity to Conducted Disturbances, Induced by Radio-Frequency Fields

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Due Date.
1	Conducted Susceptibility Generator	HTEC	CDG6000	126A140012016	2022-06-08
2	Coupling network	HTEC	CDN-M2+M3	A22/0382/2016	2022-06-08
3	Attenuator 6dB	HTEC	ATT6	HA1601	2022-06-08
4	Electromagnetic clamp	LUTHI	EM101	35535	2022-06-08

Power Frequency Magnetic Field Immunity Test

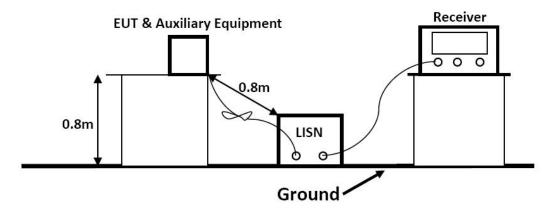
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Due Date.
1	Power frequency mag-field generator System	HTEC	HPFMF100	100-2400	2022-06-08

Voltage Dips,Short Interruptions and Voltage Variations Immunity Test

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Due Date.
1	Voltage dips and up generator	HTEC	HPFS161P	162202	2022-06-10

Radiated, Radio-Frequency, Electromagnetic Field Immunity Test

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Due Date.
1	RS Test Software	Tonscend	/	/	N/A
2	ESG Vector Signal Generator	Agilent	E4438C	MY42081396	2022-11-14
3	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03СН03-НҮ	2023-06-11
4	RF POWER AMPLIFIER	OPHIR	5225R	1052	2022-11-21
5	RF POWER AMPLIFIER	OPHIR	5273F	1019	2022-11-21
6	Stacked Broadband Log Periodic Antenna	SCHWARZBECK	STLP 9128	9128ES-145	2022-11-21
7	Stacked Mikrowellen LogPer Antenna	SCHWARZBECK	STLP 9149	9149-484	2022-11-21
8	RS Test Software	Tonscend	/	/	2022-03-24


This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 12 of 56 Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

Report No.: LCS211127017BE

4. TEST DETAILS

4.1 Conducted Disturbance

4.1.1 Block Diagram of Test Setup

4.1.2 Test Standard

EN IEC 55015:2019+A11:2020

4.1.3 Limits

Disturbance voltage limits at the electric power supply interface				
Frequency range	Limits (dBµV)*			
Trequency runge	Quasi-peak	Average		
9kHz to 50kHz	110			
50kHz to 150kHz	90 ~ 80*			
150kHz to 0.5MHz	66 ~ 56*	56~46*		
0.5MHz to 5.0MHz	56	46*		
5.0MHz to 30MHz	60	50		

NOTE 1: at the transition frequency, the lower limit applies.

NOTE 2: The limit decreases linearly with the logarithm of the frequency in the ranges 50 kHz to 150 kHz and 150 kHz to 0,5 MHz.

Disturbance voltage limits at wired network interfaces other than power supply				
_	Limits (dBµV)*			
Frequency range	Quasi-peak	Average		
0.15MHz to 5.0MHz	84 to 74	74 to 64		
5.0MHz to 30MHz	74	64		

NOTE: The disturbance voltage limits are derived for use with an artificial asymmetrical network (AAN) which presents a common mode (asymmetric mode) impedance of 150 Ω to the measured interface.

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 13 of 56

Disturbance voltage limits of local wired ports: electrical power supply interface of non-restricted ELV lamps				
Frequency range	Limits (dBµV)*			
	Quasi-peak	Average		
9kHz to 50kHz	136			
50kHz to 150kHz	116~106*			
150kHz to 0.5MHz	92 ~ 82*	82 ~ 72*		
0.5MHz to 5.0MHz	82	72*		
5.0MHz to 30MHz	86	76		

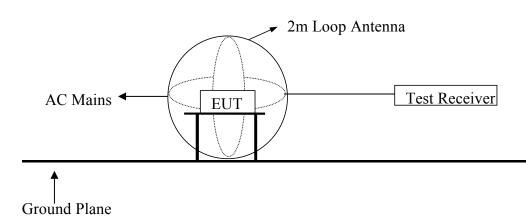
NOTE: The limits in this table apply if no 26 dB attenuator is applied.

Disturbance voltage limits at local wired ports: local wired ports other than electrical power supply interface of ELV lamp					
Frequency range Limits (dBµV)*					
	Quasi-peak	Average			
0.15MHz to 5.0MHz	80	70			
5.0MHz to 30MHz	74	64			

4.1.4 Test Procedure Description

The EUT is put on the table which is 0.8 meter high above the ground, and connected to the AC mains through a Line Impedance Stabilization Network (LISN). EUT is powered by V-type artificial power network, and the distance from LISN/ISN is 0.8m. The part of the EUT power cord exceeding 0.8m folds in parallel to form a 0.3-0.4 m eights harness.

The bandwidth of the test receiver is set at 200Hz in 9k~150kHz range and 9kHz in 150k~30MHz range.


4.1.5 Test Results

Refer to Annex A.1

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 14 of 56

4.2 Radiated Disturbance (9kHz to 30MHz)

4.2.1 Block Diagram of Test Setup

4.2.2 Test Standard

EN IEC 55015:2019+A11:2020

4.2.3 Limits

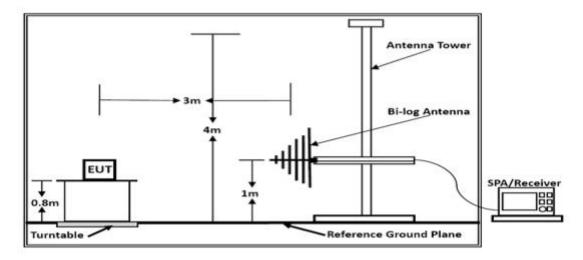
LLAS radiated disturbance limits in the frequency range 9 kHz to 30 MHz			
Frequency range	Limits for loop diameter (dBµA)		
	2m		
9kHz to 70kHz	88		
70kHz to 150kHz	88 to 58*		
150kHz to 3.0MHz	58 to 22*		
3.0MHz to 30MHz	22		

NOTE1: At the transition frequency the lower limit applies. NOTE2: Decreasing linearly with logarithm of the frequency.

4.2.4 Test Procedure Description

The EUT is placed on a wood table in the center of a loop antenna. The induced current in the loop antenna is measured by means of a current probe and the test receiver. Three field components are checked by means of a coaxial switch.

The frequency range from 9kHz to 30MHz is investigated. The receiver is measured with the quasi-peak detector. For frequency band 9kHz to 150kHz, the bandwidth of the field strength meter is set at 200Hz. For frequency band 150kHz to 30MHz, the bandwidth is set at 9kHz.


4.2.5 Test Results

Refer to Annex A.2

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 15 of 56

4.3 Radiated Disturbance (30MHz to 1000MHz)

4.3.1 Block Diagram of Test Setup

4.3.2 Test Standard

EN IEC 55015:2019+A11:2020

4.3.3 Limits

SAC Radiated disturbance limits and associated measurement methods in the frequency range 30 MHz to 1 GHz (at 3 m distance)				
Frequency range (MHz)	Quasi-Peak Limits(dBµV/m)			
30~230	40			
230 ~ 1000	47			

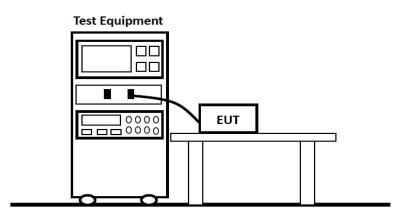
NOTE1: at the transition frequency, the lower limit applies. NOTE2: Distance refers to the distance in meters between the measuring instrument antenna geometric center and the closed point of any part of the EUT. NOTE3: Testing method which the Semi Anechoic Chamber

4.3.4 Test Procedure Description

The Radiated Disturbance test was conducted in a 3M Semi Anechoic Chamber and conforming to CISPR 16. The EUT is placed on a turntable, which is 0.8 meter high above the ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. By-log antenna (calibrated by Dipole Antenna) is used as a receiving antenna. Both horizontal and vertical polarization of the antenna is set on test.

The bandwidth of the Receiver is set at 120kHz; The frequency range from 30MHz to 1000MHz is investigated.

4.3.5 Test Results


Refer to Annex A.3

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 16 of 56

No1- */

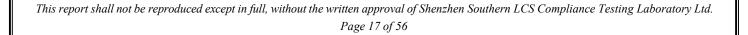
4.4 Harmonic Current Emissions

4.4.1 Block Diagram of Test Setup

4.4.2 Test Standard

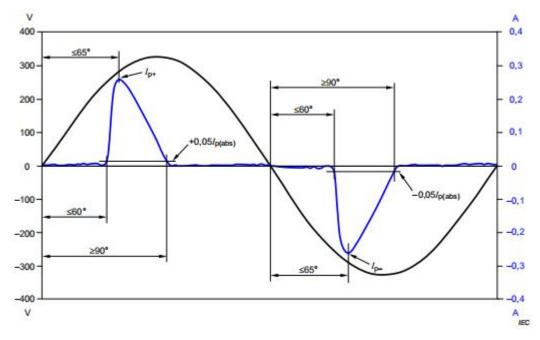
EN IEC 61000-3-2:2019+A1:2021 (for Class C equipment)

4.4.3 Limits


Reted Power>25W:

Harmonic order	Maximum permissible harmonic current expressed as a percentage of the input current at the fundamental frequency
n	%
2	2
3	27·λ*
5	10
7	7
9	5
$11 \le h \le 39$ (odd harmonics only)	3

Rated power≥5 W and≤25 W:


Lighting equipment having a rated power greater than or equal to 5 W and less than or equal to 25 W shall comply with one of the following three sets of requirements:

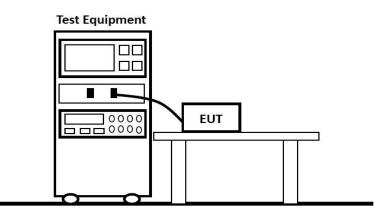
- the harmonic currents shall not exceed the power-related limits of Table;

U	Marinerra nomicail la homeonio		
Harmonic order	Maximum permissible harmonic		
	current per watt		
n	mA/W		
3	3,4		
5	1,9		
7	1,0		
9	0,5		
11	0,35		
$13 \le h \le 39$ (odd harmonics only)	3,85/h		

- the third harmonic current, expressed as a percentage of the fundamental current, shall not exceed 86 % and the fifth harmonic current shall not exceed 61 %. In addition, the waveform of the input current shall be such that it reaches the 5 % current threshold before or at 60°, has its peak value before or at 65° and does not fall below the 5 % current threshold before 90°, referenced to any zero crossing of the fundamental supply voltage. The current threshold is 5 % of the highest absolute peak value that occurs in the measurement window, and the phase angle measurements are made on the cycle that includes this absolute peak value.

NOTE I o(abs) is the higher absolute value of I and I ...

- the THD shall not exceed 70 %. The third order harmonic current, expressed as a percentage of the fundamental current, shall not exceed 35 %, the fifth order current shall not exceed 25 %, the seventh order current shall not exceed 30 %, the ninth and eleventh order currents shall not exceed 20 % and the second order current shall not exceed 5 %.


4.4.4 Test Results

Refer to Annex A.4

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 18 of 56

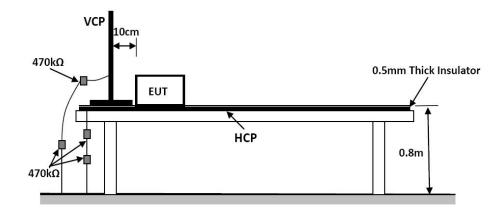
4.5 Voltage Fluctuations & Flicker

4.5.1 Block Diagram of Test Setup

4.5.2 Test Standard

EN 61000-3-3:2013/A2:2021

4.5.3 Test Results


Refer to Annex A.5

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 19 of 56

4.6 Electrostatic Discharge Immunity Test

4.6.1 Block Diagram of Test Setup

4.6.2 Test Standard

EN 61547:2009

4.6.3 Limits

Electrostatic discharges — Test levels						
Discharge Type	Discharge Level (KV)		Number of discharges			
Disenarge Type	+	-	(Each point)	Criteria		
Air Discharge-Direct	2, 4, 8	2, 4, 8	20			
Contact Discharge-Direct	2, 4	2, 4	20	В		
Contact Discharge- Indirect	2, 4	2, 4	20			

4.6.4 Test Procedure

a) Air Discharge

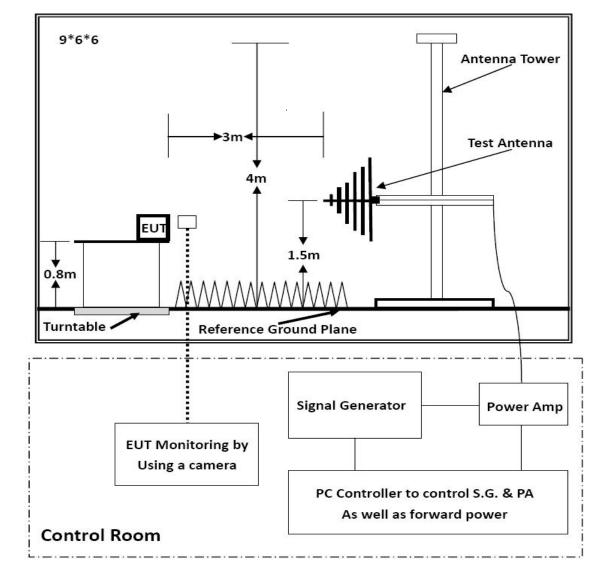
This test is done on a non-conductive surfaces. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

b) Contact Discharge

This test is done on a conductive surfaces. except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

c) Indirect Discharge For Horizontal Coupling Plane and Vertical Coupling Plane

At least 20(+/-10) times at each pole) single discharges shall be applied to the coupling plane, at points on each side of the EUT. The discharge electrode positions vertically at a distance of 0.1m from the EUT and with the discharge electrode touching the coupling plane. with a time interval of at least 1 second between each discharge.


4.6.5 Test Results

Refer to Annex A.6

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 20 of 56

4.7 Radiated, Radio-Frequency, Electromagnetic Field Immunity Test

4.7.1 Block Diagram of Test Setup

4.7.2 Test Standard

EN 61547:2009

4.7.3 Limits

Radio-frequency electromagnetic fields – Test levels					
Characteristics	Test levels	Performance			
		Criteria			
Frequency range	80 MHz to 1 000 MHz				
Test level	3 V/m (unmodulated)	A			
Modulation	1 kHz, 80 % AM, sine wave				

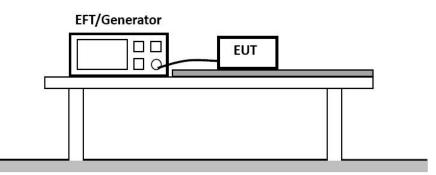
This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 21 of 56

4.7.4 Test Procedure

The test was carried out in a half-wave anechoic chamber with absorbent material attached to a reflective ground plate.

Before the test, the test field strength needs to be calibrated. During the calibration, the corresponding relationship between the target field strength and the forward power applied to the transmitting antenna is established.During the test, except for EUT, the indoor layout is consistent with the calibration.

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. EUT is set 3 meter away from the transmitting antenna which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna are set on test. Each of the four sides of EUT must be faced this transmitting antenna and measured individually. In order to judge the EUT performance, a CCD camera is used to monitor EUT screen.


4.7.5 Test Results

Refer to Annex A.6

R 101

4.8 Electrical Fast Transient/Burst Immunity Test

4.8.1 Block Diagram of Test Setup

4.8.2 Test Standard

EN 61547:2009

4.8.3 Limits

Fast transients - Test levels at input and output a.c. power ports							
Test	Repetition	Burst	Burst	Test	Coupling	Performance	
Levels	Frequency	Duration	Period	Duration	Method	Criteria	
±1 kV	5 kHz	15ms	300ms	2 min per polarity	Direct	В	

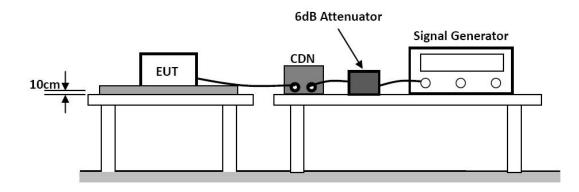
Fast transients - Test levels at input and output d.c. power ports								
Test	Repetition	Burst	Burst	Test	Coupling	Performance		
Levels	Frequency	Duration	Period	Duration	Method	Criteria		
±0.5kV	5 kHz	15ms	300ms	2 min per polarity	Direct	В		

Note: Not applicable to equipment not connected to the mains while in use.

4.8.4 Test Procedure

The EUT is put on the table which is 0.8 meter high above the ground. This reference ground plane shall project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m.

The EUT is connected to the power mains by using a coupling device which couples the EFT interference signal to AC or DC power lines. Both polarities of the test voltage should be applied during compliance test, Fast transients are carried out with a minimum duration of 2 min with a positive polarity and a minimum of 2 min with a negative polarity


4.8.5 Test Results

Refer to Annex A.6

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 23 of 56

4.9 Immunity to Conducted Disturbances, Induced by Radio-Frequency Fields

4.9.1 Block Diagram of Test Setup

4.9.2 Test Standard

EN 61547:2009

4.9.3 Limits

Radio-frequency common mode – Test levels at input and output a.c. power ports								
			-	r ports	_			
Frequency	Test Level Modulation Coupling Perform							
range (MHz)	(V/m)	Signal	Method	Steps	Criteria			
0.15 to 80 3 1kHz, 80%, AM, Sine wave CDN 1% A								
Note: Only applicable to ports interfacing with cables whose total length,								
according to the	e manufactur	er's specification,	may exceed	3 m.				

Radio-frequency common mode – Test levels at input and output d.c. power ports								
Test Level (V/m)	Modulation Signal	Coupling Method	Steps	Performance Criteria				
0.15 to 80 3		CDN	1%	А				
-	T <mark>est levels a</mark> Test Level	Test levels at input and outpTest LevelModulation	Test levels at input and output d.c. poweTest LevelModulationCoupling(V/m)SignalMethod21kHz, 80%,CDN	Test levels at input and output d.c. power portsTest Level (V/m)Modulation SignalCoupling MethodSteps21kHz, 80%, (CDN)10/				

Note: Only applicable to equipment that is connected to the mains while in use.

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 24 of 56

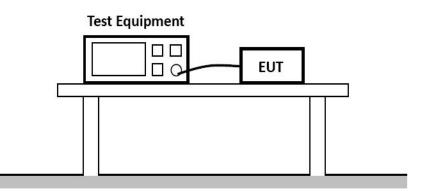
4.9.4 Test Procedure

a) The EUT are placed on an insulated wooden table 0.8m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).

b) The test signal is sent to the coupling device through the 6dB attenuator, and then injected into the EUT test port by the common mode of the coupling device. The power port is injected use CDN. The signal line and control line are injected use Electromagnetic Injection Clamp

c) The frequency range is swept from 150kHz to 80MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1kHz sine wave. The rate of sweep shall not exceed 1.5*10-3decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.

4.9.5 Test Results


Refer to Annex A.6

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 25 of 56

4.10 Surge Immunity Test

4.10.1 Block Diagram of Test Setup

4.10.2 Test Standard

EN 61547:2009

4.10.3 Limits

Surges – Test levels at input a.c. power ports							
		D	evice				
Cha	aracteristics	Self-ballasted lamps		tires and auxiliaries	Performance		
		and semi-luminaires	Input power		Criteria		
			≤25	>25 W			
Wav	e-shape data	1.2/50 µs	1.2/50 µs	1.2/50 µs			
Test	line to line	$\pm 0.5 \text{ kV}$	$\pm 0.5 \text{ kV}$	$\pm 1.0 \text{ kV}$	C		
Levels	line to ground $\pm 1.0 \text{ kV}$		$\pm 1.0 \text{ kV}$	$\pm 2.0 \text{ kV}$			
	Note: In addition to the specified test level, all lower test levels as detailed in IEC						
61000-4-5	5 should also be s	atisfied.					

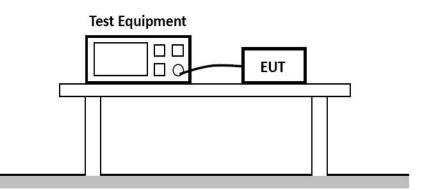
4.10.4 Test Procedure

a) The surge is applied to the EUT power supply terminal via the capacitive coupling network, to the EUT power supply provide a 1.0KV 1.2/50us voltage surge (at open-circuit condition).

d) At least 5 positive and 5 negative (polarity) tests with 1/min repetition rate are conducted during test. and phase angles is 90° and 270° .

c) Different phase angles and line-to-line, line-to-ground coupling mode measurements

d) line-to-line coupling mode, the Generator impedance is 2 Ω , line-to-ground coupling mode,the Generator impedance is $12\,\Omega$.


4.10.5 Test Results

Refer to Annex A.6

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 26 of 56

4.11 Voltage Dips, Short Interruptions and Voltage Variations Immunity Test

4.11.1 Block Diagram of Test Setup

4.11.2 Test Standard

EN 61547:2009

4.11.3 Limits

Voltage dips and short interruptions-Test levels at input a.c. power ports								
	Test Level	Duration	Performance criterion					
Voltage dips	70% of Vnom	10 cycle(50Hz)	С					
Short Interruptions	0% of Vnom	0.5 cycle(50Hz)	В					

4.11.4 Test Procedure

a) The EUT shall be connected to the test generator for testing using the shortest power cable specified by the EUT manufacturer and, if no cable length is specified, the shortest cable suitable for the EUT.

b) The interruptions is introduced at selected phase angles with specified duration.

c) EUT shall carry out tests in accordance with the prescribed test grade and duration, and the test interval is 10s

4.11.5 Test Results

Refer to Annex A.6

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 27 of 56

ANNEX A

(Emission and Immunity test results)

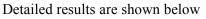
A.1 Conducted Disturbance Test Results

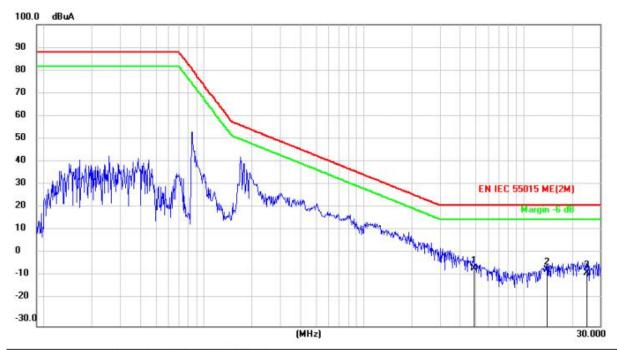
Environmental Conditions:	23.9°C, 53% RH	
Test Voltage:	AC 230V,50Hz	
Test Model:	YF-A08-SF01-720w	
Test Mode:	Mode 1	
Test Engineer:	Sam Chen	
Pol:	Line	
Detailed results are shown be	elow	
120.0 dBuV		5 Conduction(QP)
0.0		

No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1		0.1754	47.84	10.23	58.07	64.70	-6.63	QP		
2	•	0.1754	42.12	10.23	52.35	54.70	-2.35	AVG		
3		1.9563	35.88	10.20	46.08	56.00	-9.92	QP		
4		1.9563	22.12	10.20	32.32	46.00	-13.68	AVG		
5		2.6666	35.25	10.20	45.45	56.00	-10.55	QP		
6		2.6666	23.41	10.20	33.61	46.00	-12.39	AVG		

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 28 of 56

Environmental Conditions:	23.9°C, 53% RH			
Test Voltage:	AC 230V,50Hz			
Test Model:	YF-A08-SF01-720w			
Test Mode:	Mode 1			
Test Engineer:	Sam Chen			
Pol:	Neutral			
Detailed results are shown below				

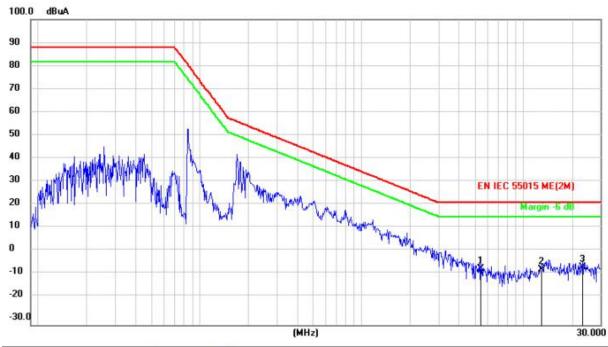

No. N	<mark>۸</mark> k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1		0.1749	44.52	10.23	54.75	64.72	-9.97	QP		
2 *		0.1749	38.28	10.23	48.51	54.72	-6.21	AVG		
3		0.7637	29.69	10.20	39.89	56.00	-16.11	QP		
4		0.7637	19.02	10.20	29.22	46.00	-16.78	AVG		
5		2.2895	34.34	10.20	44.54	56.00	-11.46	QP		
6		2.2895	19.09	10.20	29.29	46.00	-16.71	AVG		


Note Measure-ment = Reading Level + Correct Factor

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 29 of 56

A.2 Radiated Disturbance Test Results (9kHz to 30MHz)

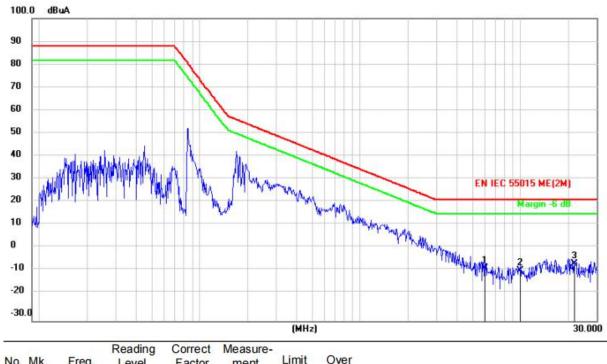
Environmental Conditions:	23.9°C, 53% RH
Test Voltage:	AC 230V,50Hz
Test Model:	YF-A08-SF01-720w
Test Mode:	Mode 1
Test Engineer:	Sam Chen
Pol:	X


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuA	dB	dBuA	dBuA	dB	Detector	Comment	
1	*	4.8752	7.16	- <mark>12.2</mark> 6	-5.10	22.00	-27.10	QP		
2		13.9946	17.00	-22.70	-5.70	22.00	-27.70	QP		
3		24.8931	27.23	-34.17	-6.94	22.00	-28.94	QP		

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 30 of 56

Environmental Conditions:	23.9°C, 53% RH
Test Voltage:	AC 230V,50Hz
Test Model:	YF-A08-SF01-720w
Test Mode:	Mode 1
Test Engineer:	Sam Chen
Pol:	Y
	1

Detailed results are shown below



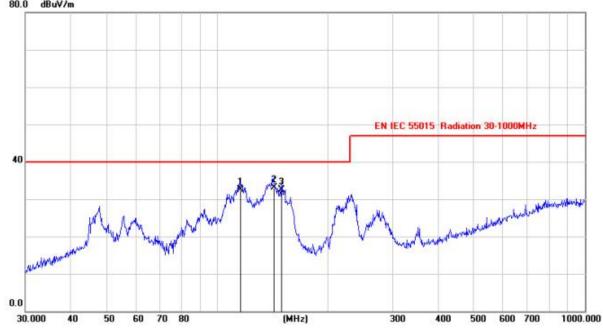
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuA	dB	dBuA	dBuA	dB	Detector	Comment	
1		5.4615	7.41	-13.63	-6.22	22.00	-28.22	QP		
2		13.0096	15.41	-21.86	-6.45	22.00	-28.45	QP		
3	*	23.1414	27.73	-33.24	-5.51	22.00	-27.51	QP		

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 31 of 56

Environmental Conditions:	23.9°C, 53% RH		
Test Voltage:	AC 230V,50Hz		
Test Model:	YF-A08-SF01-720w		
Test Mode:	Mode 1		
Test Engineer:	Sam Chen		
Pol:	Z		

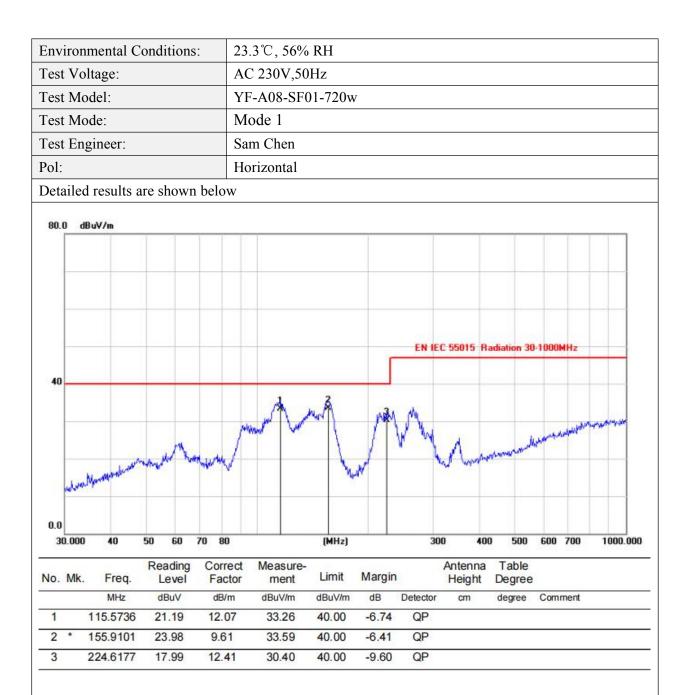
Detailed results are shown below

VIN.	rieq.	Level	Factor	ment	Linit	0.01			
	MHz	dBuA	dB	dBuA	dBuA	dB	Detector	Comment	
	6.0198	7.63	-14.93	-7.30	22.00	-29.30	QP		
	10.0350	12.14	-20.41	-8.27	22.00	-30.27	QP		
*	21.8640	27.00	-32.46	-5.46	22.00	-27.46	QP		
		MHz 6.0198 10.0350	MHz dBuA 6.0198 7.63 10.0350 12.14	MHz dBuA dB 6.0198 7.63 -14.93 10.0350 12.14 -20.41	MHz dBuA dB dBuA 6.0198 7.63 -14.93 -7.30 10.0350 12.14 -20.41 -8.27	MHz dBuA dB dBuA dBuA 6.0198 7.63 -14.93 -7.30 22.00 10.0350 12.14 -20.41 -8.27 22.00	MHz dBuA dB dBuA dBuA dBuA dBuA dBuA dB 6.0198 7.63 -14.93 -7.30 22.00 -29.30 10.0350 12.14 -20.41 -8.27 22.00 -30.27	MHz dBuA dB dBuA dBuA dBuA dB Detector 6.0198 7.63 -14.93 -7.30 22.00 -29.30 QP 10.0350 12.14 -20.41 -8.27 22.00 -30.27 QP	MHz dBuA dB dBuA dBuA dB Detector Comment 6.0198 7.63 -14.93 -7.30 22.00 -29.30 QP 10.0350 12.14 -20.41 -8.27 22.00 -30.27 QP


Note Measure-ment = Reading Level + Correct Factor

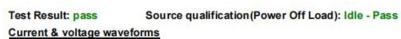
This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 32 of 56

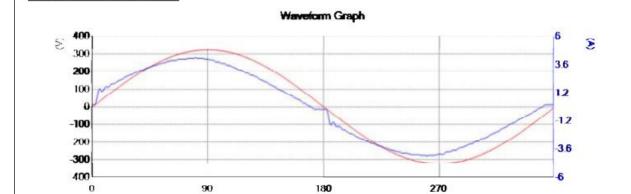
Environmental Conditions:	23.3°C, 56% RH				
Test Voltage:	AC 230V,50Hz				
Test Model:	YF-A08-SF01-720w				
Test Mode:	Mode 1				
Test Engineer:	Sam Chen				
Pol:	Vertical				
Detailed results are shown below					


A.3 Radiated Disturbance Test Results (30MHz to 1000MHz)

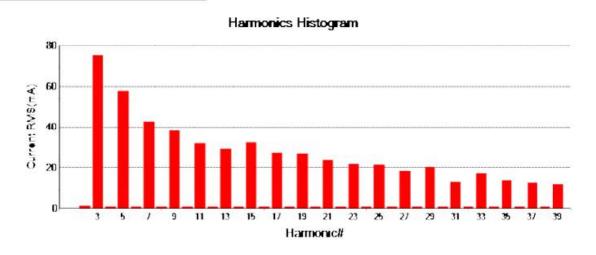
No.	Mk.	Freq.	Freq.	Freq.	Freq.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	81
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment				
1		116.0304	20.32	12.23	32.55	40.00	-7.45	QP							
2	*	142.6992	19.64	13.56	33.20	40.00	-6.80	QP							
3		149.9451	18.94	13.48	32.42	40.00	-7.58	QP							

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 33 of 56




Note Measure-ment = Reading Level + Correct Factor

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 34 of 56


A.4 Harmonic Current Emissions Test Results

Environmental Conditions:	23.9°C, 53% RH				
Test Model:	YF-A08-SF01-720w				
Test Voltage:	AC 230V,50Hz				
Test Mode:	Mode 1				
Test Engineer:	Sam Chen				
Detailed results are shown below					

Harmonics and Class C limit line (>25W)

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 35 of 56

2)

nviro	onmental Conditions:	23.9°	23.9°C, 53% RH								
est M	Iodel:	YF-A	YF-A08-SF01-720w								
est V	oltage:	AC 2	AC 230V,50Hz								
est M	lode:	Mode	e 1								
est E	ngineer:	Sam (Chen								
	ed results are shown b										
	ce qualification (Power O urements are compliant			. 4 & IEC/EN	61000-4-7 Ed. Deviation	. 2.1 Allowed	Result				
-		Nominai	Low	High	Deviation	Deviation	Result				
-	Supply Voltage	230	229.23	229.52	-0.77	4.6	Pass				
-	Supply Voltage										
-	Supply Frequency	50	50.0	50.0	0.0	0.25	Pass				
-	Crest Phase	90.0	89.5	89.8	-0.5	3.0	Pass				
-	Crest Factor Fundamental Voltage	1.414 229.36	1.413	1.414	-0.001	-0.014//0.006	Pass				
10	# Harmonics Voltage	Harmonic		imit Re	sult		1				
2345678901123456789011222234567890122334567890123333	0.030 0.010 0.010 0.020 0.000 0.010 0.020 0.000 0.000 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.0000000 0.00000000	0.024 0.007 0.014 0.010 0.011 0.004 0.003 0.013 0.013 0.013 0.013 0.010 0.003 0.016 0.000 0.013 0.011 0.011 0.011 0.013 0.010 0.013 0.010 0.003 0.000 0.003 0.000	0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	00 Pas 00 Pas	55 55 55 55 55 55 55 55 55 55 55 55 55						
33	0.000										
	0.000 0.020 0.000 0.020 0.000	0.013 0.000 0.010 0.000	0.1	00 Pas 00 Pas	SS						

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 36 of 56

TING

PR

Fest Mod	del:	YF	YF-A08-SF01-720w						
Test Volt	tage:	AC	230V,50Hz						
Test Mod	•		de 1						
Test Eng	ineer:	San	n Chen						
-	results are show								
Test Res	ult: pass	Source qual	ification (Powe	er Off Load): I	dle - Pass				
1550 Se		THD(%): 4.9	PO	HC(mA):57.00	0 POHC	Limit(mA):273	.392		
Paramete		229.3	Crest Fa	cy(Hz): 50.0 ctor: 1.436					
	Power (Watts): 6			ower Factor:	10.000				
Harm#	Harms(filtered) (mA)	Limit (mA)	Harms(avg) (mA)	100%Limit	Harms(max) (mA)	150%Limit	Status		
I_Fund	2881.800			2.082		4 954	Dane		
2	1.000	57.636 778.086	1.200 75.400	9,690	1.600 76.600	1.851 6.563	Pass		
34 56 7	0.800	-	1.000	-	1.400	-	N/A		
5	58.000	288.180	57.900	20.092	58.900	13.626	Pass		
6	0.700		0.900		1.000		N/A		
7	42.600	201.726	42.400	21.019	42.900	14.178	Pass		
8	0.700	144.090	0.700	26.789	0.800	18.044	N/A Pass		
0	38.300	144.090	38.600	20.789	39.000	18.044	Pass N/A		
1	32.000	86.454	31.800	36.783	32.100	24.753	Pass		
2	0.700	A STATE STATE	0.700		0.800		N/A		
3	29.400	86.454	29.800	34.469	30.300	23.365	Pass		
4	0.700		0.700		0.800		N/A		
5	32.100	86.454	31.800	36.783	32.100	24.753	Pass		
6	0.700 27.500	86.454	0.800 28.000	32.387	0.800 28.500	21.977	N/A Pass		
8	0.700	-	0.700	-	0.800	-	N/A		
9	26.900	86.454	26.500	30.652	26.900	20.743	Pass		
20	0.700	-	0.800	-	0.800		N/A		
1	23.700	86.454	24.200	27.992	24.800	19.124	Pass		
2	0.700	00 454	0.800	04 007	0.800	40 570	N/A		
23	21.500	86.454	21.300	24.637	21.500 0.800	16.579	Pass N/A		
5	21.300	86.454	21.800	25.216	22.200	17.119	Pass		
6	0.800	-	0.800	-	0.800	-	N/A		
27	18.100	86.454	17.900	20.705	18.300	14.112	Pass		
28	0.800		0.800		0.800	-	N/A		
9	19.900	86.454	20.100	23.249	20.500	15.808	Pass		
0	0.700	86.454	0.800	15 304	0.800	10.487	N/A Pass		
12	13.100	00.454	13.300 0.800	15.384	13.600	10.487	Pass N/A		
3	17.200	86.454	17.100	19.779	17.400	13.418	Pass		
4	0.700	-	0.800	-	1.000	-	N/A		
5	13.600	86.454	14.000	16.194	14.500	11.181	Pass		
6	0.800		0.800	-	1.000		N/A		
7	12.500	86.454	12.500	14.459	12.700	9.793	Pass		
38	0.800	00 104	0.900	10 500	1.000		N/A		
39	12.000	86.454	11.700 0.900	13.533	12.200	9.408	Pass N/A		
40									

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 37 of 56

A.5 Voltage Fluctuations & Flicker Test Results

Environmental Condit	ions: 23.	9℃, 53% R	H			
Test Model:	YF	-A08-SF01-	720w			
Test Voltage:	AC	AC 230V,50Hz				
Test Mode:	Mo	Mode 1				
Test Engineer:	Sar	Sam Chen				
Detailed results are sh						
Load Power	: 645.9 W	650 0 VA	Power Fact	or 0	980	
	: 2.9 Arms					
Loud ourient	. 2. 5 11 115	па при о	rest ructe		10	
EN 61000-3-3:2013	- Voltage redu	ction is p	ositive			
Voltage Variations						
	Voltage: 230					
Highest Half-cyc						
Lowest Half-cyc	ie level: +0.	52%				
	d(max): 0.	00%	Limit:	4%	PASS	
	t(max): 0.					
		ooseconds	Limit.	000113	1100	
Steady State de	finition: >100	Oms within	+/- 0.2%			
Largest d(c) cha	nge down: 0.	00%				
Largest d(c) c						
Largest d(c) change: 0.	00%	Limit:	3. 3%	PASS	
Flicker						
FIICKEI						
Pst Cla			Calculatio			
Duration	Flicker	Inter	val F	rst		
0.1%	0.01					
0.7%	0.01					
1. 5%	0.01					
2. 2%	0.01					
3%	0.00					
4%	0.00					
6%	0.00					
8%	0.00					
10%	0.00					
13%	0.00					
17%	0.00					
30%	0.00					
50%	0.00					
80%	0.00					

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 38 of 56

A.6 Immunity Test Results

M/NYF-A08-SF01-720wHumidityTest ModeMode 1PressureInput VoltageAC 230V,50HzTest ResultsTest EngineerSam ChenTest ResultsDischarge modeTest points $2kv$ $4kv$ ResultsTest points $2kv$ $4kv$ BackPPPLeftPPPRightPPPTopPPPDirect-Air DischargeFrontPPDirect-Air DischargeLeftPPDirect-Air DischargeErontPPDirect-Air DischargeEront <th>23.9°C 51% 1008mbar Pass Pass / Performance / B / B / B / B / B</th>	23.9°C 51% 1008mbar Pass Pass / Performance / B / B / B / B / B
EUTFoldable led plant grow lightTemperatureM/NYF-A08-SF01-720wHumidityM/NYF-A08-SF01-720wHumidityTest ModeMode 1PressureInput VoltageAC 230V,50HzTest ResultsTest EngineerSam ChenTest ResultsDischarge modeTest points $2kv$ $4kv$ M/NYF-A08-SF01-720wHumidityPessureInput VoltageAC 230V,50HzTest ResultsTest ResultsTest EngineerSam ChenTest ResultsTest ResultsDischarge modeTest points $2kv$ $4kv$ $8kv$ PischargeFrontPPP/BackPPP/PDirect-Contact DischargeFrontPPP/BackPPPP/Direct-Air DischargeFrontPPPPDirect-Air DischargeFrontPPPPDirect-Air DischargeFrontPPPPDirect-Air DischargeFrontPPPPPDirect-Air DischargeFrontPPPPPDirect-Air DischargeFrontPPPPPDirect-Air DischargeFrontPPPPPDirect-Air DischargeFrontP <th< td=""><td>51% 1008mbar Pass Pass Performance Criteria - / B / B / B</br></td></th<>	51% 1008mbar Pass
M/NYF-A08-SF01-720wHumidityTest ModeMode 1PressureInput VoltageAC 230V,50HzTest ResultsTest EngineerSam ChenTest ResultsDischarge modeTest points $2kv$ $4kv$ ResultsTest points $2kv$ $4kv$ BackPPP/LeftPPP/TopPPP/BottomPPP/FrontPPP/LeftPPP/BackPPP/LeftPPP/BottomPPP/Direct-Air DischargeFrontPPDirect-Air DischargeEftPPPDirect-Air DischargeFrontPPPDirect-Air DischargeFrontPPP	51% 1008mbar Pass Pass Performance Criteria - / B / B / B
Test ModeMode 1PressureInput VoltageAC 230V,50HzTest ResultsTest EngineerSam ChenTest ResultsDischarge modeTest points $2kv$ $4kv$ 8kv+-+9kPPP<	1008mbar Pass Pass Performance Performance B Pass Performance B Performance B
Input VoltageAC 230V,50HzTest ResultsTest EngineerSam ChenTest ResultsDischarge modeTest points $2kv$ $4kv$ $8kv$ $+$ -+-+-Discharge modeFrontPPPP/BackPPPP/BackPPPP/DischargeFrontPPP/BackPPPP/DischargeFrontPPP/BackPPPP/Direct-ContactFrontPPP/BackPPPP/DischargeFrontPPPPPDirect-Air DischargeFrontPPPPPDirect-Air DischargeFrontPPPPPDirect-Air DischargeFrontPPPPPDirect-Air DischargeFrontPPPPPDirect-Air DischargeFrontPPPPPDirect-Air DischargeFrontPPPPPDirect-Air DischargeFrontPPPPPDirect-Air DischargePPPPPPDirect-Air DischargeFront	Pass Performance Performance B Pass Performance B Pass Performance B Pass Performance Performance B Pass Performance Performance B Pass Performance B Performance B Pass Performance B Pass Performance B Pass Performance B Performa
Test EngineerSam ChenTest pointsResultsDischarge modeTest points $2kv$ $4kv$ Test points $2kv$ $4kv$ $4kv$ $4kv$ PPPPPPDischargeFrontPPPDirect-Contact DischargeDirect-Contact DischargePPPPDirect-Contact DischargePPPPPPPPPP/Direct-Contact DischargeFrontPPPDirect-Contact DischargePPPPDirect-Contact DischargePPPPDirect-Contact DischargeFrontPPPPPPPP/Direct-Contact DischargeFrontPPPPPPPPPPDirect-Contact BackPPPPP	Performance Criteria - / B / B / B / B
Discharge modeTest pointsResultsDischarge modeTest points $2kv$ $4kv$ $8kv$ $+$ $ +$ $ +$ $ +$ $ -$ <td>Criteria - / B / B / B / B</td>	Criteria - / B / B / B / B
Discharge modeTest points $2kv$ $4kv$ $8kv$ $+$ $ +$ $ +$ $ +$ $ \mu$ μ P P P P P P P μ μ P P P P P P P μ μ P P P P P P P μ μ P P P P P P P μ μ P P P P P P P μ μ P P P P P P P μ μ P P P P P P P μ μ μ P P P P P P μ μ μ P P P P P P μ μ μ P P P P P P μ μ μ μ P P P P P μ	Criteria - / B / B / B / B
Discharge modeTest points $2kv$ $4kv$ $8kv$ $+$ $ +$ $ +$ $ +$ $ \mu$ μ P P P P P P P μ μ P P P P P P P μ μ P P P P P P P μ μ P P P P P P P μ μ P P P P P P P μ μ P P P P P P P μ μ P P P P P P P μ μ μ P P P P P P μ μ μ P P P P P P μ μ μ P P P P P P μ μ μ μ P P P P P μ	Criteria - / B / B / B / B
FrontPPPPBackPPPP/BackPPPP/LeftPPPP/RightPPPP/TopPPPP/BottomPPPP/FrontPPPPPBackPPPPPLeftPPPPP	/ B / B
Direct-Contact Discharge Back P P P P / / Left P P P P / Right P P P P / Top P P P P / Bottom P P P P / Bottom P P P P / Back P P P P P P Back P P P P P P Left P P P P P	/ B / B
Direct-Contact Discharge Left P P P P / Right P P P P / Top P P P P / Bottom P P P P / Bottom P P P P / Back P P P P P Back P P P P P Left P P P P P	/ B
Discharge Left P P P P P / Right P P P P / Top P P P P / Bottom P P P P / Front P P P P / Back P P P P P Back P P P P P Left P P P P P	
TopPPPPBottomPPPPFrontPPPPBackPPPPLeftPPPP	
Image: Direct-Air DischargeImage: Direct-Air DischargePPPPPImage: Direct-Air DischargeImage: Direct-Air Discharge	/ B / B
FrontPPPPBackPPPPLeftPPPP	/ B
Direct- Air Discharge	P B
Direct- Air Discharge	P B
Air Discharge Right P P P P P	P B
	P B
Top P P P P P	P B
Bottom P P P P P	P B
Indirect-Contact Discharge(VCP) / P P P / /	/ B
Indirect-Contact / P P P P / Discharge(HCP)	/ B

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 39 of 56

R

2

Radiated, Radio-Frequency, Electromagnetic Field Immunity Test Results										
Standard	☑ EN 61547: 200	☑ EN 61547: 2009 ☑ EN 61000-4-3: 2								
Applicant	SHENZHEN ABE	EST LIGHTING CO.,	.,LTD.							
EUT	Foldable led plant	grow light	Temperature	23.5℃						
M/N	YF-A08-SF01-720	0w	Humidity	53%						
Test Mode	Mode 1		Pressure	1008mbar						
Input Voltage	AC 230V,50Hz		Test Engineer	Baron.wen						
Modulation	80% AM 1KHz		Test Results	Pass						
Steps	1%									
Angle of EUT	Antenna polarization	Frequency Range (MHz)	Test Level (V/m)	Performance Criteria						
	Vartical									

0°	Vertical, Horizontal	80 to 1000	3	А
90°	Vertical, Horizontal	80 to 1000	3	А
180°	Vertical, Horizontal	80 to 1000	3	А
270°	Vertical, Horizontal	80 to 1000	3	А

Note:

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 40 of 56

100 ×

Electrical Fast Transient/Burst Immunity Test Results									
Standard	☑ EN 61547: 2	000-4-4: 2012							
Applicant	SHENZHEN ABEST LIGHTING CO.,LTD.								
EUT	Foldable led pl	Temperature		2	24.1℃				
M/N	YF-A08-SF01-	Humidity		5	54%				
Test Mode	Mode 1	Pressure		1008mbar					
Input Voltage	AC 230V,50H	Test Results		Pass					
Test Engineer	Sam Chen								
Test Port Type	Test Level	Repetition Frequency	Test Du	uration	۱	Performance			
	requency rest Level Repetition Frequency		+	-		Criteria			
AC Power ports	$\pm 1.0 kV$	2min	2mii	n	В				
DC Input /Output Power ports									

Note:

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 41 of 56

2)

Standard	Radio-Frequency Fields Test Results Image: Description of the state of						
Applicant	SHENZHEN ABEST LIGHTING CO.,LTD.						
EUT	Foldable led plant		Temperature	24.1°C			
M/N	YF-A08-SF01-720	<u> </u>	Humidity	54%			
Test Mode	Mode 1	, , , ,	Pressure	1008mbar			
Input Voltage	AC 230V,50Hz		Test Results	Pass			
Test Engineer	Sam Chen						
Test Port Type	Frequency range (MHz)	Test Level (V/m)	Coupling method	Performance Criteria			
AC Power ports	0.15 to 80	3	CDN	А			
DC Input /Output Power ports							

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 42 of 56

Surge Immunity Test Results									
Standard	☑ EN 6154	47: 2009	🗹 EN 6	61000-4-5: 2014+A1:2017					
Applicant	SHENZHEN	SHENZHEN ABEST LIGHTING CO.,LTD.							
EUT	Foldable lec	l plant grow l	ight	Temperature 24.1			°C		
M/N	YF-A08-SF	01-720w		Humidity		54%	,)		
Test Mode	Mode 1	Pressure	Pressure 1008		8mbar				
Input Voltage	AC 230V,50Hz			Test Resu	Test Results Pass		SS		
Test Engineer	Sam Chen								
Test Port Type	Inject Line	Inject Line Tset Level Phase (kV) Angle		Number of surges	Repet ra		Performance criteria		
AC Imput	L-N	+ 1.0	90°	5	60	S	С		
AC Input		- 1.0	270°	5	60	S	С		
A C. Immut	L-PE	+ 2.0	90°	5	60s		С		
AC Input		- 2.0	270°	5	60s		С		
A C Imput	N-PE	+ 2.0	90°	5	60	S	С		
AC Input	IN-FE	- 2.0	270°	5	60	S	С		
AC Innut	I &NI DE	+ 2.0	90°	5	60	S	С		
AC Input	L&N-PE	- 2.0	270°	5	60	s	С		

Note:

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 43 of 56

Voltage Dips, Short Interruptions and Voltage Variations										
Immunity Test Results										
Standard	☑ EN 61547: 20	009 🗹 EN 61	000-4-11: 2004+A1:2017							
Applicant	SHENZHEN AB	EST LIGHTING CO.	D.,LTD.							
EUT	Foldable led plan	t grow light	Temperature	24 .1℃						
M/N	YF-A08-SF01-72	20w	Humidity	54%						
Test Mode	Mode 1		Pressure	1008mbar						
Input Voltage	AC 230V,50Hz		Test Results	Pass						
Test Engineer	Sam Chen									
	1									
Vnom	Frequency Test Level		Duration	Performance criteria						
AC 230V	50Hz 70% of Vnom		10 cycle(50Hz)	С						
AC 230V	50Hz 0% of Vnom		0.5 cycle(50Hz)	В						

Note:

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 44 of 56

ANNEX B (Test photograph)

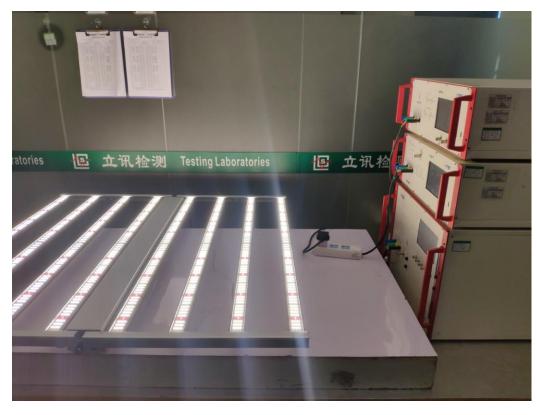

B.1 Photo of Conducted Disturbance

B.2 Photo of Radiated Disturbance(9kHz to 30MHz)

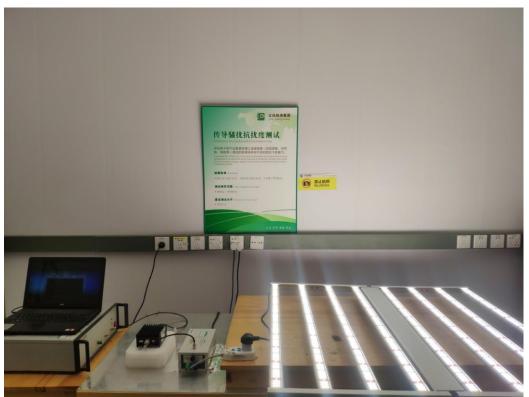
This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 45 of 56

B.3 Photo of Radiated Disturbance(30MHz to 1000MHz)

B.4 Photo of Harmonic Current Emissions&Voltage Fluctuations & Flicker

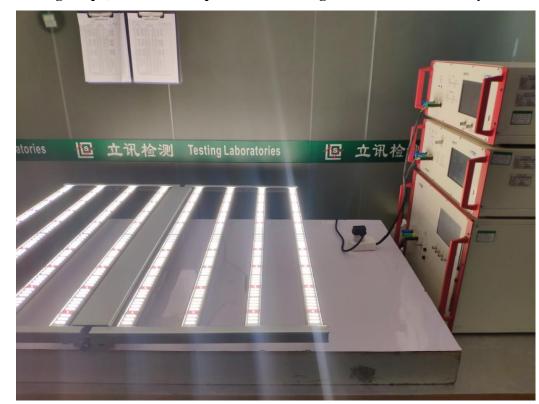

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 46 of 56

B.5 Photo of Electrostatic Discharge Immunity Test



B.6 Photo of Electrical Fast Transient/Burst Immunity Test

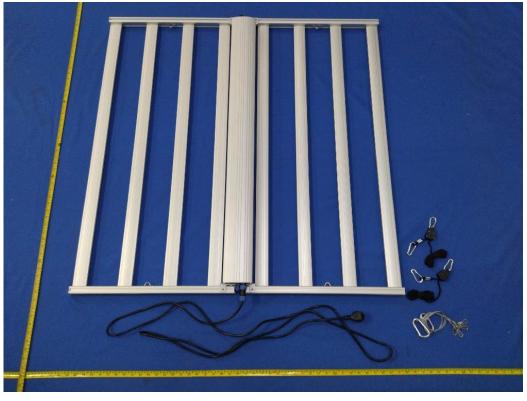
This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 47 of 56


B.7 Photo of Immunity To Conducted Disturbances, Induced by Radio-Frequency Fields

B.8 Photo of Surge Immunity Test

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 48 of 56

B.9 Photo of Voltage Dips, Short Interruptions and Voltage Variations Immunity Test



This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 49 of 56

ANNEX C (External and internal photos of the EUT)

Figure. 1

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 50 of 56

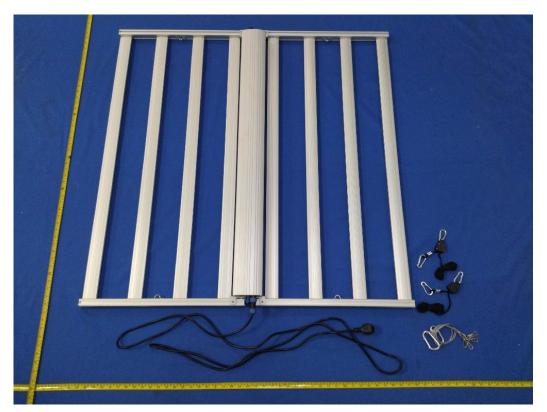


Figure. 3

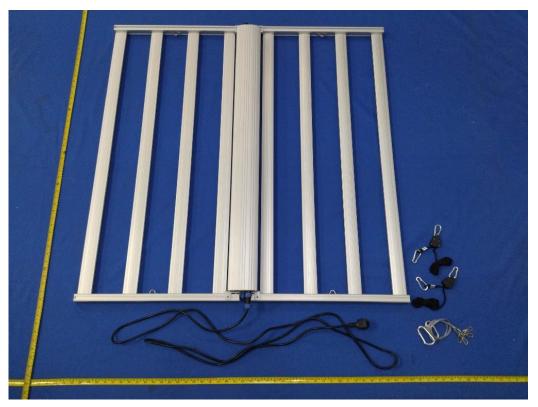


Figure. 4

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 51 of 56 Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

Figure.5

Figure.6

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 52 of 56

Non-

*

Figure. 7

Figure. 8

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 53 of 56

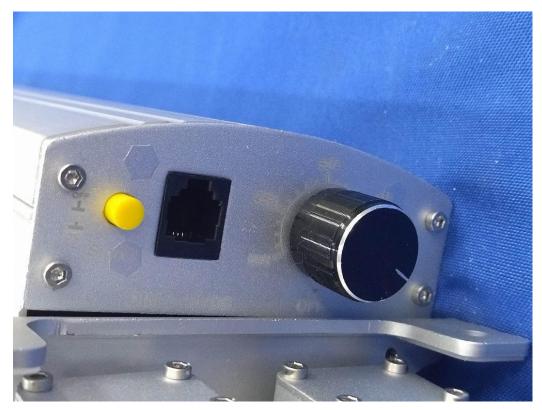
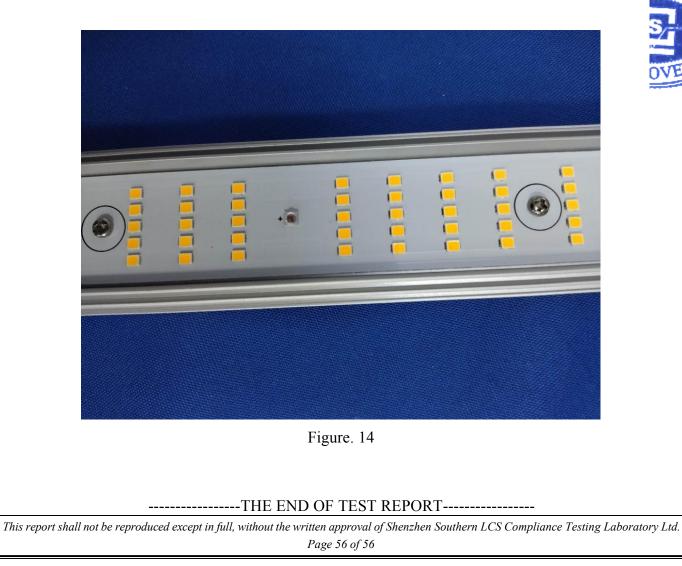


Figure. 9

This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 54 of 56

TING

Figure. 11



This report shall not be reproduced except in full, without the written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Page 55 of 56

Figure. 13

